THE FUNDAMENTALS OF HONING FILTRATION

CLEAN FLUIDS LEAD TO LONGER TOOL AND EQUIPMENT LIFE. LEARNING ABOUT FILTER MEDIA AND METHODS WILL HELP TO BOLSTER YOUR BOTTOM LINE.

By Christopher J. Erato
In today’s manufacturing environment it is essential that every process be as efficient and cost effective as possible. Operating costs must be minimized in order to compete. Parts must be produced at a faster rate, with more-consistent quality, and productivity must be maximized. The honing process is no exception to the rule.

The goal, therefore, is to minimize the operating costs associated with the honing process. Certainly there are many ways to do this. We can select a better honing stone and tooling, and we can select a better metalworking fluid. All of these are viable options, but many times these variables are changed to treat the symptom of the problem and not the problem itself.

For example, if a manufacturing engineer is faced with the problem of short honing stone life the usual result is to select a harder stone material (at a higher cost per tool). The tool life goes up, but the real problem may not have been addressed, because dirty fluid may have been the reason for the reduced stone life. A better, more cost effective solution in the long run may have been to optimize the filter media selection and/or replace the filter system with a more efficient one. With clean fluid the less-expensive tooling could be used, thereby reducing operating costs. Coupled with the other benefits of a better filter, such as reduced disposal costs, reduced makeup fluid costs, and reduced labor to clean sumps, the overall operating costs may have been substantially reduced by addressing the problem—a poor filter system—instead of treating the symptom.

The Honing System

The honing system consists of the following items, at minimum:

- Hone
- Honing stone/tooling
- Metalworking Fluid
- Product
- Filter System

It is our job to minimize the operating costs associated with this system, which include—but are not limited to—the following:
How do we minimize the operating costs through better filtration? While there is no perfect filter or filter media, there is an optimal combination for every application. With a proper understanding of the filtering process, available filters, and available filter media, it is possible to select the best system for any application. The following information is designed to assist in making the proper choices.

Principles of Filtration

All filters utilize a force to drive fluid through a barrier (filter media) where the solids are collected. Higher differential pressure across the media translates to more and finer particles being removed; a better, more-efficient filter. In some cases the barrier merely prevents the solids from entering the clean side of the system (screening). In this case the solids are not removed from the system, but are prevented from entering the clean side. In other cases the solids are trapped and removed from the system (filtering). The filtration process can take three forms: 1) surface filtration; 2) depth filtration, and; 3) cake filtration. All three forms of the filtering process are utilized to remove honing solids from metalworking fluid. Note: For this discussion the filter barrier is usually non-woven disposable media, or filter paper.

In cake filtration, the filtration media need only be tight enough to catch the solids to establish the cake. The filter media for this application can be a cleanable belt.
Surface Filtration: In surface filtration the media is the sole barrier to trap and remove solids. In this form of filtration the solids are trapped on the surface of the media, and once the entire surface is plugged the media will be indexed to expose another fresh section. The media is generally very tight and relatively expensive.

Depth Filtration: In depth filtration the media is the sole barrier to trap and remove solids. In this form of filtration the solids are trapped in the depth of the media, and once the depth and surface are plugged the media will be indexed to expose another fresh section. The media is generally very tight, is lofted (has depth), and is relatively expensive.

Cake Filtration: In applications where there is a good mixture of larger solids and small particles we can use the larger particles to bridge over the filter media and establish a filter cake to trap finer particles. In this form of filtration the larger dirt becomes the filter media and traps smaller particles for removal. Dirt filters dirt.

How do you improve cutting efficiency, lower costs and increase tool life?

Ionbond offers gear makers engineered services for high value consumable cutting tools. All makes and brands of hobs, shapers and broaches can be coated to improve performance. With global knowledge in providing innovative solutions, local Ionbond coating centers offer a package of services that include recoating, resharpening and tool management. Beginning with HP-TiN and the MaximizeR™ Aluminum Titanium Nitride family of coatings, Ionbond has the approach that is most suitable for your combination of machinery, material and gear geometry.

Ionbond: 1598 E. Lincoln, Madison Heights, MI 48071
Tel. 1-800-929-1794, E-Mail: info@ionbond.com.

Visit us at Gear Expo 2005 – Booth # 449

Visit Gear Solutions at GEAR EXPO 2005 Detroit and register to win a full set of Callaway Big Bertha golf clubs: includes bag, driver, irons, putter, glove, umbrella, towel, hat, golf balls and tees. This is one of many exciting things we will give away. To mention a few...

- 2 Callaway Big Bertha Drivers
- Gear Solutions golf balls, hats and other accessories

Don’t miss this opportunity for a HOLE-IN-ONE!

Visit us at Gear Expo 2005 – Booth # 635
CLEAN TO HONE

DISPOSABLE MEDIA

DIRTY FROM HONE

MAGNETIC SEPARATOR

FLOAT SEPARATOR

CLEAN RESERVOIR

TOTE BOX

FEATURES: Inexpensive • Simple

LIMITATIONS: Low Efficiency: Secondary Filter Required, Frequent Dump and Recharge of Fluid • Higher Media Cost per Gallon Processed • Limited Media Selection • Manual Attention to Change Bag/Cartridge • Wet Cake Discharge: High Fluid Costs, High Disposal Costs

SETCO™

Precision Spindle Repair Services

- Expert CNC Spindle Rebuild Service
- All Makes & Models
- Belt-Driven, Motorized & Geared
- Best Service & Warranty in the Industry!

Great Lakes Service Center
Novi, MI 48375
Toll Free: 1-877-773-5349
Phone: 248-899-8989
Fax: 249-889-8665

Midwest Service Center
Cincinnati, OH 45233
Toll Free: 1-800-543-0470
Phone: 513-467-7262
Fax: 513-841-8613

Western Service Center
Huntington Beach, CA 92649
Toll Free: 1-866-362-0699
Phone: 714-372-3730
Fax: 714-372-3750

STD Precision Gear & Instrument, Inc.
318 Manley St. Unit 5 • West Bridgewater, MA 02379
(888) STD-GEAR or (508) 580-0035
Fax (888) FAX-4STD or (508) 580-0071
E-mail info@stdgear.com
Web site: www.stdgear.com

GEARING AHEAD TO MEET INDUSTRY’S DEMAND FOR PRECISION

--Serving--

Aircraft • Aerospace • Actuation Instrumentation • Optic Robotics • Radar • Medical Marine • Defense • Experimental Prototype • Production Hi-Performance Automotive

Precision Gear Products (up to AGMA Q14):
Common Liquid/Solid Separators
There are many devices that can be utilized to remove solids from liquids. Some of these are as follows:

- Centrifuge
- Separators: Hydrocyclone, Magnetic
- Dragout
- Gravity
- Vacuum: Hydro-Vac, Air-Vac
- Pressure: Manual Clean, Bag, Cartridge, Automatic Clean (Tubular Backwashing, Flat Bed)
- Combinations: Tubular Backwashing with Flat Bed Pressure Filter, Tubular Backwashing with Dragout

All of these are used in metalworking applications, but many are not efficient enough for honing. This article will detail only the most commonly used devices for honing.

Gravity Filter (Surface Filtration Mode)
The gravity filter is a simple filter where the force driving the fluid through the filter media is gravity. As the media plugs and the fluid level rises, a float switch is tripped and the media is indexed.

HYDRO-VAC VACUUM FILTER

FEATURES: Less Media Usage than Gravity • Greater Media Selection than Gravity • Better Efficiency than Gravity • Filter Aid Capability

LIMITATIONS: Limited Media Selection: Limited Efficiency • No Positive Seal: Fluid Bypass from Dirty-Clean, Limited Efficiency • Maintenance: Moving Conveyor in Dirty Fluid, Must Drain Tank to Service Filter • Wet Cake Discharge: High Fluid Makeup Costs, High Disposal Costs

Custom Manufacturing of High Performance Gears

- Spur and Helical Gears up to 10” diameter
- Shaping, Hobbing & Gear Grinding
- Palloid, Spiral Bevel & Hypoid Gearing
- Gear Assemblies
- Custom Machining
- Testing & Inspection
- O.D./I.D. Grinding

HIGH PERFORMANCE GEAR, INC.
2119 FM 1626 • Manchaca, TX 78652
Ph: 512-292-9148 • Fax: 512-280-0678 • Email: hpg@randolphaustin.com • www.hpgear.net
The gravity filter usually must be combined with a magnetic separator, and in some instances a bag or cartridge filter, to increase efficiency when used for honing. The magnetic separator will remove ferrous particles. The bag or cartridge filter is usually placed in the clean supply line to protect the hone from any particulate that has passed through the separator and filter media.

Hydro-Vac Vacuum Filter
Surface, Depth, or Cake Filtration Modes

The hydro-vac is essentially a drag tank that utilizes filter media. The media lay below the fluid level in the dirty tank. It is held in place by the weight of the chains and flights. The filter pump draws a suction under the media to pull the fluid through it. The solids are contained on the top. When the media becomes plugged with solids the pump suction is redirected to a clean reservoir and the vacuum on the filter media is released. The conveyor motor is energized and the media is indexed 12"-24". The spent media may be re-rolled for easier disposal. After the index cycle the pump suction is returned to the vacuum box and fluid is once again drawn through the filter media. The clean reservoir is re-filled for the next index cycle.

Some vacuum filters can utilize cleanable belts, as well as disposable non-woven filter media. In the honing application, the cleanable belt must usually be utilized with filter aid. The filter aid protects the belt from plugging.

Tubular Backwashing Pressure Filter
Cake Filtration Mode

Tubular filters require the use of filter aid (diatomaceous earth, Perlite, cellulose, etc.) to function properly. Tubes are pre-coated with the filter aid material by pumping a slurry of the filter aid and process liquid into the vessel. This provides a filtration barrier down to sub-micron levels. Dirty liquid, combined with filter-aid slurry (body feed), is pumped into the filter during the filtration cycle to further enhance the filter’s efficiency and filtration cycle length. When the filter reaches its terminating pressure (usually 20-30 psi) the filtration cycle is ended and the tubes are automatically backwashed with clean liquid. The dirty backwash slurry is drained into a collection tank for dragout or de-watering/de-oiling with a flatbed pressure filter.

Virtually any number of tubes can be provided within single or multiple housings. Common sizes include 248 tube (186 ft² of filtering area) and 376 tube (282 ft² of filtering area) housings.

Flat Bed Pressure Filter
Surface, Depth, or Cake Filtration Modes

The filter can be described as a single, horizontal chamber pressure filter that is fully automatic and operates at up to 50 psi differential pressure. The filter chambers are closed with the filter media (filter paper or cleanable belt) between them. Dirty liquid is pumped into the filter and solids begin to accumulate on the filter media, thereby increasing the filter pressure. When the pressure
reaches the terminating set point the dirty liquid flow is stopped and compressed air is brought into the upper chamber to dry out the collected solids. When the solids are dry the chambers are separated and the filter media is advanced until a fresh section of media is in position between the chambers. The process is repeated. The dry solids are separated from the filter media for disposal.

Filter Media

Filter media includes non-woven, disposable media (filter paper) and cleanable belts. Both of these play an important role in the filtering process. The role of the filter media differs with the mode of filtering: surface filtration, depth filtration, or cake filtration.
Surface Filtration: In surface filtration the media is the only barrier to trap solids and prevent migration. A tight, consistent media with random distribution of fibers must be selected. These media are usually relatively inexpensive. Examples would be spun-bond polypropylene or polyester/cellulose blends.

Depth Filtration: In depth filtration the media is again the only barrier to trap solids and prevent migration, but in this mode the media is designed with some loft (depth) to trap the solids. These media are some of the most expensive, but can be very efficient at removing solids and extending filter cycles to acceptable limits. Examples would be PowerLoft, CrystaLoft, and HolliFlo.

Cake Filtration: In cake filtration the role of the filter media is to catch the large particles to establish the filter cake. After the large solids are trapped they become the filter media, since dirt filters dirt. In this mode the media needs to be just tight enough to establish the cake. Relatively inexpensive disposable, non-woven media can be selected. Cleanable belt material can be utilized on the flat bed pressure filter, and to a lesser degree also on the vacuum filter. Examples would be Rayon, spunbond polypropylene, and spunbond polyester.

Types of Filter Media
There are many product families available to choose from. Each family has a number of different grades or basis weights. Each product therefore has a basic set of measured properties that indicate overall performance. These include material, weight (oz/yd2 in US), grab
strength (in machine and cross directions), burst strength (psi in U.S.), and air permeability (CFM/ft² in U.S.). Heavier basis weights within the same family will be stronger and tighter. However, this is not true when comparing different families of products. A 1 oz/yd² rayon is not equivalent to a 1 oz/yd² spunbond polypropylene.

In addition, “lofted” depth media are proprietary in material and construction. These are usually heavy products starting at 2.0 OSY, although some are as heavy as 9.0 OSY. Some examples are PowerLoft, CrystaLoft, HolliFlo, and MasterFlo.

Proper media selection is dependent upon many factors, including but not limited to: type of filter, filter condition, fluid, material being honed, mode of filtration, and maximum particle size allowable. I recommend consulting with a filter media supplier to obtain the optimal selection. In general, select the media that delivers the best performance/operating cost ratio. A tighter, more-efficient media may be more costly per roll but may deliver lower operating costs, i.e. longer life, better part quality, less scrap, and less fluid usage.
Filter Aids
Filter aids are solid, intricately shaped, porous particles that are utilized as the large particles to remove smaller particles in the cake filtration process. There are numerous filter aids available, although most will fall into three categories; cellulose, perlite, or diatomaceous earth (DE). Each has properties that make them attractive.

Filter aids extend filtering cycles and increase filter efficiency. The smaller solids are trapped by the larger, porous filter aid solids in the depth of the filter cake. This provides a flow path for the fluid and prevents the filter media from plugging prematurely. Types of filter aids include:

- **Cellulose**: There are a number of different grades of cellulose fiber filter aids. They are generally classified by the average fiber length. The longer the fiber, the more easily it will bridge the filter medium. The shorter the fiber, the more efficient it will be at removing smaller particles. Notes: not as efficient as perlite or DE; ashless; can be incinerated; inert; organic.
- **Perlite**: Consists of naturally occurring siliceous rock (volcanic glass). When perlite rock is heated quickly the water trapped in it is released and expands from four to 20 times its original size. Several grades are available, and they are generally classified by relative porosity. Notes: more efficient than cellulose; inert.
- **Diatomaceous Earth (DE)**: An industrial mineral composed of the skeletal remains of microscopic aquatic plants. These are called diatoms, hence the name “diatomaceous earth.” DE is available in numerous grades and are usually classified by median pore size. Notes: most efficient filter aid; composed mainly of silica; 10-200 micron in diameter; human carcinogen, though not dangerous with proper handling.

When Precision Holding is Critical
The Answer is Hydra-Lock.

Originators & Developers of Hydraulic Holding

Hydra-Lock Corporation originated and developed the concept of hydraulic chucking and holds all of the original patents. Over 50 years of continuous research and development has resulted in Hydra-Lock's unmatched expertise in the development and production of sophisticated precision work holding devices. Our motto is "If you can machine it, we can hold it".

Hydra-Lock's Arbors and Chucks are especially well suited to holding all types of precision gears for all machining and inspection procedures. We hold and completely fill the pitch diameter regardless of machining errors and contact the part the full length of the spline. The standard accuracy for our tools is, .0002 TIR with repeatability of .000050.

Benefits of Good Filtration
We’ve analyzed the process, selected the best filter media or filter aid or have selected a different type of filter, but what do we stand to gain? What are the benefits of good filtration? At the very minimum they are:

- Proper Honing Tool Action
- Expansion
- Contraction
- Extended Stone Life
- Extended Fluid Life
- Reduced Disposal Costs
- Fluids
- Solids
- Increased Productivity
- Better Quality Parts

ISO 9001 Certified

Hydra-Lock's full-line of products include arbors/chucks for grinding, turning/gaging, balancing, drilling, reaming, honing, milling & boring. Newly developed arbors/chucks for maximum expansions & contractions with movements up to .250" or greater.

800-634-6973

HYDRA-LOCK

Originateurs et developpeurs de chocs hydrauliques

www.hydralock.com

email: hydralock@spcglobal.net

**Visit us at Gear Expo 2005
Booth # 435**

ABOUT THE AUTHOR:

Christopher J. Erato is product manager for Oberlin Filter Company, which is based in Waukesha, Wisconsin. He can be reached at (262) 547-4900. The company’s Web site is [www.oberlinfilter.com].